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The application of the Bloch-Wangsness-Redfield theory of nuclear relaxation to the study
of perturbed angular correlations in even-A nuclei subject to simultaneous static and time-
dependent quadrupole interactions has been treated. The differences in the perturbation factors

as compared to the odd-A case are shown,

In a recent paper! (denoted below by I), we have
treated the application of the Bloch-Wangsness-
Redfield theory of nuclear relaxation to the study
of perturbed angular correlations (PAC) in odd-A
nuclei subject to simultaneous static and time-de-
pendent quadrupole interactions, Stimulated by
recent experimental results? we have investigated
the extension of this formalism to the case of even-
A nuclei (integral spins).

Problems may be expected in the case of integral
spins due to the degeneracy of the hyperfine transi-
tions + -0 and - ¢ -0, where @ represents the
spin projection m;. The result of this degeneracy
in NMR studies is that the resonance line corre-
sponding to these transitions may have a shape made
up of a superposition of Lorentzians,® which would

correspond to the appearance of a combination of
exponentials for the relaxation of the associated
frequency in the perturbed angular-correlation spec-
trum. It is the purpose of this addendum to show
that this effect will in fact occur in perturbed angu-
lar-correlation spectrum.

To demonstrate this, we review first the solution
of the odd-A problem. The basic equation to be
solved is (2.16) of I:

‘;:“'=B§Rﬂtﬁfﬂﬂ'p;;', a—a':B-—ﬁ' (1)

where the matrix elements R, g are combinations
of various spectral densities of the form

Suarner (@)= [ (| KO &)@ K(t=7)| e " .
@
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Equation (1) can be separated into diagonal (a= o',
B=4") and off-diagonal parts which are uncoupled.
In the solution of the off-diagonal parts it becomes
necessary to evaluate matrix elements of the form
R o+ ..o Which depend on spectral densities of the
form

usas(@) = [ (a|K®)| B(- B K(t+7)| @) et ar,
(3)
Srarar (@)= [2((a| K@)] @Y a| K(t =) ' Poe T ar .
However, since the two terms in these matrix
elements have different selection rules and cor-
respond to parts of the Hamiltonian assumed to be

uncorrelated, they vanish. The resulting form of
the off-diagonal matrix is simply

ﬁ:a' =Rya aa'p:a' 4)
with the solution
p;a' (t) = e'haa"p;‘a, (0) ’ (5)

corresponding to (2. 22) of 1.

In the case of integral spins the structure of the
diagonal part of I remains unchanged, but for the
off-diagonal part the situation is different. In par-
ticular, spectral-density functions of the type (3),
when either @ or B is zero, have the form

o-008(@) = | (O] K@) - B(B| K(t+7)| 0P e~ “"ar 6
which now is nonzero, since the two matrix ele-
ments involve the same selection rule. Thus, the
relaxation matrix elements of the form R, 4. o)
Ryg'aors and Rygyeq o are nonzero if either @ or o’
is zero.

As an illustration, we show the equations corre-
sponding to (4) for the off-diagonal components in
the case @’'=0. We obtain the two coupled equa-
tions

Bao® = 1/ R 4900 P2 ) + Ragoao Pleo @],
ﬁjao(t) = (1 /ﬁa)[R.ao-aO Pfao(t) + R-aan P:o (t)] .

These can be rewritten as
h—zp:(](t) - RaOaO P:o(t) = Rao-aopjao(t) ’
th;',‘o(t) = R_40.00P200(®) = R_a0a0Pa0(®) -

We can try for pX,. a solution of the type

®8)

p*(t)g(aa') = p*(o)*(aa' ) e"‘aa" . (9)
Substituting Eq. (9) into Eq. (8) one obtains
(Ahz - Raan) P;‘o (0) =R @0-a0 Pfao(O) )
O‘h-z - R-ao-au) pfao(o) =R_y0a0 p:o(o) .

However, examination of the definitions shows that
for quadrupole interactions

(10)

Rey0a0=R.a0-00= @) 11)
Ryo-00=R_apa0= b,

which lead us to the eigenequation
(7% = a)l po(0) £ pXao(0)] = B P20 (0) £ p % ()] . (12)

Analyzing the sum and the difference in the brack-
ets of Eq. (12), using the definitions of p%,(0) given
by Eq. (2.3) in I, we see that the possible eigenval-
ues for A are

A= (b+a)/H2,
A= (b_ a)/hzy

which give for the components of the density matrix
pXo(t) = e + ™) p20(0) = pZo(O)],

pXo)= 3l + e[ p2yo(0) - p2 (0)],

whereas for those terms not involving either « or
a' equal zero the solution remains that of Eq. (5).

The perturbation factors in any particular case
could be calculated using Eqs. (2. 28) and (3.1) of
I. We see that for the transition to ground state an
additional sum of exponentials will appear in the
perturbation factors derived for the odd-A nuclei
case,

(13)

(14)
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